RIGOL

- 单机支持多达320个切换通道,单通道成本极低
- 可脱离PC独立运行
- USB数据直接存储功能
- 高达100K的数据缓存
- 8种模块卡可选
- 6½位DMM,任意槽位任意插拔,支持DCV、DCI、ACV、ACI、 2WR、4WR、周期、频率、温度(热电偶、热敏电阻和RTD) 以及任意传感器测量功能
- 标配多种通信接口: USB Device、USB Host、GPIB、LAN (LXI Core 2011 Device)、RS232
- 标准的SCPI命令集
- 数学统计功能: AVG、MAX、MIN、SDEV
- 良好的人机交互界面
- 在线帮助系统
- 多国系统语言
- 4.3英寸彩色LCD
- 配套上位机控制分析软件

无论是研发阶段的产品性能测试,还是生产过程中的自动化测试,针对多测试点,多种信号测量等应用,模块化结构的M300系列数据采集/开关系统将精密的测量功能与灵活的信号连接功能相结合,可提供丰富的测试测量解决方案。

M300系列数据采集/开关系统

设备尺寸: 宽×高×深 = 239.0mm×159.0mm×373.4mm 重量: 约5.7kg (不含包装)

▶ 设计特色

·向导式涌道配置

测量配置

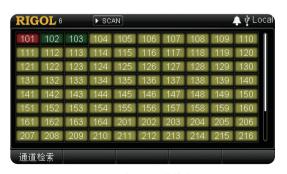
报警配置

定标配置

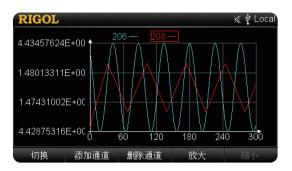
高级配置

·通道监视功能

单通道监视



多/全通道监视


·多视图切换功能

实时显示扫描信息,可查看选中通道的全部测量数据

实时显示通道状态

可绘制扫描数据曲线

报警信息

模块继电器开关次数统计功能

错误信息

·多种配置拷贝功能

切换 通道拷贝

返回

完成

模块拷贝

扩展拷贝

·模块单独控制

可单独控制各模块

MC3164 控制界面

MC3534 控制界面

MC3132 控制界面

MC3648 控制界面

MC3416 控制界面

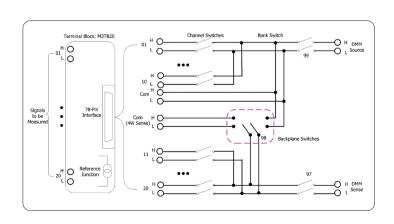
·上位机通道配置界面

·上位机数据分析界面

M300支持的模块/接线盒

模块	接线盒	描述
DMM-MC3065	无需接线盒	DMM 模块 用于测量被测信号 6½ 位读数分辨率 测量功能包括直流电压、交流电压、直流电流、交流电流、二 线电阻、四线电阻、频率、周期、温度以及任意传感器 在接入 DMM 模块后,需要确保接入模拟总线的被测信号不高于 300 Vdc 或 300 Vrms
MUX20-MC3120	RIGOL M3TB20	20 通道多路复用器 20 个通道均可转换 HI 和 LO 输入 支持四线测量 被测信号通过 M3TB20 接线盒接入 可与 MC3065 相连
MUX32-MC3132	RIGOL M3TB32	32 通道多路复用器 32 个通道均可转换 HI 和 LO 输入 支持四线测量 被测信号通过 M3TB32 接线盒接入 可与 MC3065 相连 支持温度传感器
MUX32-MC3132	M3TB32T	32 通道多路复用器 32 个通道均可转换 HI 和 LO 输入 支持四线测量 被测信号通过 M3TB32T 接线盒接入 可与 MC3065 相连
RIGOL MUX64-MC3164	RIGOL M3TB64	64 通道单端多路复用器 64 个通道均只可转换 HI 输入 不支持四线测量 被测信号通过 M3TB64 接线盒接入 可与 MC3065 相连

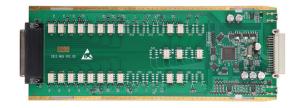
MIX24-MC3324	M3TB24	20 个电压通道 +4 个电流通道混合多路复用器 20 个电压通道均可转换 HI 和 LO 输入 20 个电压通道支持四线测量 4 个电流通道用于执行直流电流或交流电流测量 被测信号通过 M3TB24 接线盒接入 可与 MC3065 相连
ACT-MC3416	RIGOL M3TB16	16 通道执行器 可将信号切换到被测设备或启动外部设备 16 通道中的每一通道可切换至常开(Normally-Open,NO) 和常闭(Normally-Closed,NC)状态 信号通过 M3TB16 接线盒接入
MFC-MC3534	RIGOL M3TB34	多功能模块 DIO: 4个8位数字输入/输出端口 TOT: 4个计数器输入端 DAC: 4个模拟输出端 信号通过 M3TB34 接线盒接入
MATRIX-MC3648	M3TB48	4×8 双线矩阵开关 用于在测试时同时将多台仪器连接到被测设备的多个点上 32 个双线交叉点,可以同时连接任何输入和输出组合 信号通过 M3TB48 接线盒接入

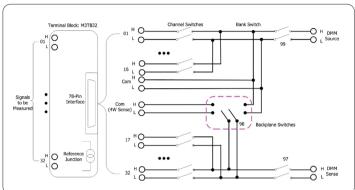

多路复用器选型指南

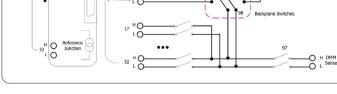
M300提供多路复用器模块,配套提供外部接线盒用于连接被测信号。参考下表,您可以选择适合的多路复用器及其配套接线盒。

		MC3120	MC3132	MC3164	MC3324
通道数		20	32	64	20+4
		2/4 线	2/4线	1线	2/4线
最大扫描速度		60Ch/s	60Ch/s	60Ch/s	60Ch/s
配套接线盒		M3TB20	M3TB32	M3TB64	M3TB24
直流电压		√	√	√	√
交流电压		√	√	√	√
直流电流					√
交流电流					√
二线电阻		√	√	√	√
四线电阻		√	√		√
频率		√	√	√	√
周期		√	√	√	√
	热电偶		√		
温度	RTD		√		
/ 血皮	RTD 4W				
	热敏电阻		\checkmark		
	直流电压	√	\checkmark	\checkmark	√
任意传感器	直流电流				√
	二线电阻	√	√	√	√
	四线电阻	√	√		√
	频率	√	√	√	√

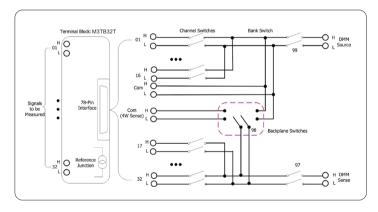
MC3120 20通道多路复用器

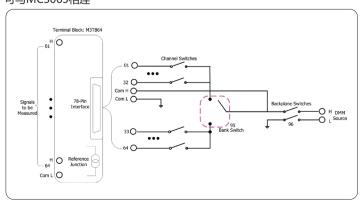

20 通道多路复用器 20 个通道均可转换 HI 和 LO 输入 支持二线测量和四线测量 被测信号通过 M3TB20 接线盒接入 可与 MC3065 相连



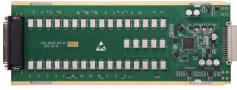


MC3132 32通道多路复用器


32 通道多路复用器 32 个通道均可转换 HI 和 LO 输入 支持二线测量和四线测量 被测信号通过 M3TB32 接线盒接入 可与 MC3065 相连 支持温度传感器

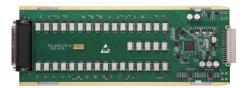

MC3132 32通道多路复用器

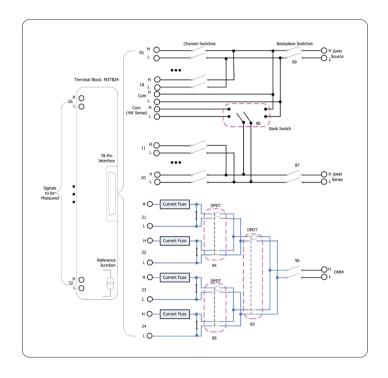
32 通道多路复用器 32 个通道均可转换 HI 和 LO 输入 支持二线测量和四线测量 被测信号通过 M3TB32T 接线盒接入 可与 MC3065 相连

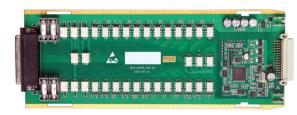


MC3164 64通道单端多路复用器

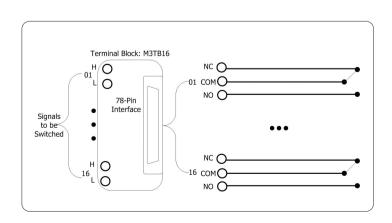
64通道单端多路复用器 64个通道均只可转换HI输入 不支持四线测量 被测信号通过M3TB64接线盒接入 可与MC3065相连

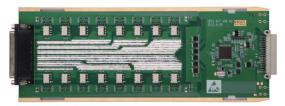





MC3324 20通道电压+4通道电流混合多路复用器

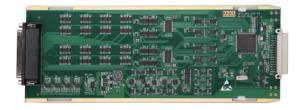
20个电压通道+4个电流通道混合多路复用器 20个电压通道均可转换H和LO输入 20个电压通道支持四线测量 4个电流通道用于执行直流电流或交流电流测量 被测信号通过M3TB24接线盒接入 可与MC3065相连

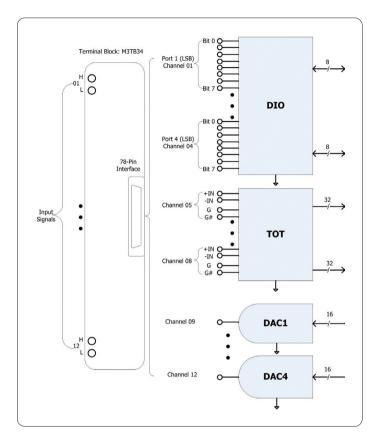



MC3416 16通道执行器

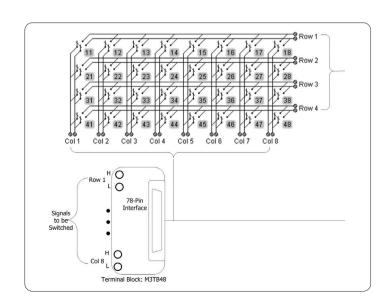
16通道执行器 可将信号切换到被测设备或启动外部设备 16通道中的每一通道可切换至常开(Normally-Open,NO)和常闭 (Normally-Closed, NC) 状态 信号通过M3TB16接线盒接入

MC3534 多功能模块


多功能模块


DIO: 4个8位数字输入/输出端口 TOT: 4个计数器输入端

TOT: 4个计数器输入端 DAC: 4个模拟输出端 信号通过M3TB34接线盒接入



MC3648 4×8双线矩阵开关

4×8双线矩阵开关

用于在测试时同时将多台仪器连接到被测设备的多个点上32个双线交叉点,可以同时连接任何输入和输出组合信号通过M3TB48接线盒接入

▶技术参数

直流特性

准确度指标: ± (% 读数 + % 量程) [1]

						= (70 以外 · 70 重任)
功能	量程 ^[2]	测试电流或负荷 电压	24 小时 ^[3] T _{CAL} ℃ ±1℃	90 天 T _{CAL} ℃ ±5℃	1年 T _{CAL} ℃±5℃	温度系数 0℃至 (T _{CAL} ℃ -5℃) (T _{CAL} ℃ +5℃) 至 50℃
	200.0000mV	-	0.0020+ 0.0020	0.0030 + 0.0025	0.0040 + 0.0025	0.0005 + 0.0005
	2.000000V	-	0.0015 + 0.0005	0.0020 + 0.0006	0.0035 + 0.0006	0.0005 + 0.0001
直流电压	20.00000V	-	0.0020 + 0.0004	0.0030 + 0.0005	0.0040 + 0.0005	0.0005 + 0.0001
	200.0000V	-	0.0020 + 0.0006	0.0040 + 0.0006	0.0050 + 0.0006	0.0005 + 0.0001
	300.000V	-	0.0020 + 0.0006	0.0040 + 0.0010	0.0055 + 0.0010	0.0005 + 0.0001
	200.0000μΑ	<0.03V	0.010 + 0.012	0.040 + 0.015	0.050 + 0.015	0.0020 + 0.0030
	2.000000mA	<0.25V	0.007 + 0.003	0.030 + 0.003	0.050 + 0.003	0.0020 + 0.0005
直流电流	20.00000mA	<0.07V	0.007 + 0.012	0.030 + 0.015	0.050 + 0.015	0.0020 + 0.0020
	200.0000mA	<0.7V	0.010 + 0.002	0.030 + 0.003	0.050 + 0.003	0.0020 + 0.0005
	1.000000A	<0.12V	0.050 + 0.020	0.080 + 0.020	0.100 + 0.020	0.0050 + 0.0010
	200.0000Ω	1mA	0.0030 + 0.0030	0.008 + 0.004	0.010 + 0.004	0.0006 + 0.0005
	2.000000kΩ	1mA	0.0020 + 0.0005	0.008 + 0.001	0.010 + 0.001	0.0006 + 0.0001
电阻 [4]	20.00000kΩ	100μΑ	0.0020 + 0.0005	0.008 + 0.001	0.010 + 0.001	0.0006 + 0.0001
	200.0000kΩ	10μΑ	0.0020 + 0.0005	0.008 + 0.001	0.010 + 0.001	0.0006 + 0.0001
	1.000000ΜΩ	2μΑ	0.002 + 0.001	0.008 + 0.001	0.012 + 0.001	0.0010 + 0.0002

注: [1] 90 分钟预热和积分时间设置为 100PLC。 [2] 所有量程为 10% 超量程。 [3] 相对于校准标准。 [4] EN 61326-1 基本场景,测试线采用绞距 1cm、长度小于 1m 的双绞线

建议测量时使用通过 Teflon 或其它高阻抗、低介质吸收材料进行绝缘的导线。

测量特性

直流电压	
输入阻抗	200mV、2V、20V 量程: 10MΩ 或 >10GΩ 可选 (当这些量程下输入超出 ±26V 时会通过 106kΩ 电阻钳位。) 200V 和 300V 量程: 10MΩ±1%
輸入保护	300V
输入偏流	50pA, 25℃时典型值
共模抑制比	140dB,对于 LO 引线中的 1kΩ 不平衡电阻,最大 ±300VDC peak。
直流电流	
分流电阻器	200μA、2mA 档: 100Ω
	20mA、200mA档: 1Ω
	1Α: 0.1Ω
电阻	
测试方法	4 线电阻或 2 线电阻可选 电流源参考到 LO 输入
开路电压	限制在 <10V
最大引线电阻 (4 线电阻)	200Ω 、 $2k\Omega$ 量程每条引线为 10% 量程。 所有其它量程每条引线为 $1k\Omega$ 。
输入保护	所有量程 300V
偏移补偿	200Ω、2kΩ 和 20kΩ 量程时可选。
关闭自动调零操作 (典型值	
仪器预热后,环境温度稳定	E±1℃和 <5 分钟,直流电压功能增加 0.0001 % 量程 + 2μV 误差。电阻功能增加 2mΩ 误差。
建立时间注意事项	
读数建立时间受源阻抗、电	3统介质特性及输入信号变化影响。万用表所选默认测量延时可以使大部分测量的第一个读数正确。

测量注意

交流特性

准确度指标: ± (% 读数 + % 量程) [1]

現代 現代 現代 現代 現代 日本 日本 日本 日本 日本 日本 日本 日						/住佣/交1日/小	生 (%) 以致 + % 重性)
200.0000mV	功能	量程 [2]	频率范围	24 小时 [3]	90天	1年	温度系数
200,0000mV				T _{CAL} °C ±1°C	T _{CAI} °C ±5°C	T _{CAL} °C ±5°C	0℃至 (T _{CAL} ℃ -5℃)
200.0000mV				CAL	CAE	CAL	
SHZ-10Hz			3Hz- 5Hz	1.00 + 0.03	1.00 + 0.04	1.00 + 0.04	
200.0000mm							
200.0000mm							
SOKH2-100kHz		200.0000mV					
100kHz - 300kHz							
2.000000V							
SH2-10Hz 0.35 + 0.02 0.35 + 0.03 0.35 + 0.03 0.05 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.008 0.006 + 0.00							
2,000000V 10Hz-20kHz 0.00 + 0.02 0.05 + 0.03 0.06 + 0.03 0.01 + 0.005 0.011 + 0.005 0.011 + 0.005 0.011 + 0.005 0.011 + 0.005 0.011 + 0.005 0.011 + 0.005 0.011 + 0.005 0.011 + 0.005 0.011 + 0.005 0.001 + 0.0005 0.0							
翼有							
真有 效性 交流 电压*** 50kHz-100kHz 100kHz-300kHz 20,00000V 0.55 + 0.08 4.00 + 0.50 0.60 + 0.08 4.00 + 0.50 0.60 + 0.08 4.00 + 0.50 0.60 + 0.08 0.20 + 0.02 対域 交流 电压**** 3Hz-5Hz 10Hz-20kHz 20kHz-50kHz 100kHz-300kHz 40kHz-100kHz 20kHz-50		2.000000V					
真有 效値 対流 100Hz-300kHz 400 + 0.50 4.00 + 0.50 0.20 + 0.02 対流 数値 地圧 3Hz-5Hz 1.00 + 0.03 1.00 + 0.04 1.00 + 0.04 0.100 + 0.04 0.00 + 0.04 0.035 + 0.004 0.035 + 0.004 0.035 + 0.004 0.035 + 0.004 0.008 + 0.005 0.012 + 0.005 0.012 + 0.005 0.012 + 0.005 0.012 + 0.005 0.004 + 0.008 0.004 + 0.008 0.004 + 0.008 0.004 + 0.008 0.004 + 0.008 0.004 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003							
度有 致値 交流 电圧 20.00000V							
真有 效値 交流 電力 でのトランのトラットの でのいるのののののののののののののののののののののののののののののののののの							
数値 交流 电圧 10Hz-20KHz	+ +	20.00000V					
交流 20kHz - 50kHz 0.10 + 0.05 0.12 + 0.05 0.15 + 0.05 0.012 + 0.005 現在日本 50kHz - 100kHz 0.55 + 0.08 0.60 + 0.08 0.60 + 0.08 0.60 + 0.08 0.60 + 0.02 0.00 + 0.50 0.20 + 0.02 0.00 + 0.02 0.00 + 0.03 0.00 + 0.00 0.00 + 0.0							
电圧 日本							
100kHz-300kHz						0.15 + 0.05	0.012 + 0.005
200,000000	电压 [4]		50kHz-100kHz	0.55 + 0.08		0.60 + 0.08	0.060 + 0.008
Page 19 10 10 10 10 10 10 10					4.00 + 0.50	4.00 + 0.50	0.20 + 0.02
200.0000V							
200.0000V 20kHz-50kHz 0.10 + 0.04 0.12 + 0.05 0.15 + 0.05 0.012 + 0.005 0.060 + 0.008 0.600 + 0.008 0.600 + 0.008 0.600 + 0.008 0.600 + 0.008 0.600 + 0.008 0.600 + 0.008 0.600 + 0.008 0.600 + 0.008 0.600 + 0.008 0.600 + 0.008 0.600 + 0.008 0.600 + 0.008 0.600 + 0.008 0.600 + 0.002 0.000 + 0.003 0.000 + 0.003 0.100 + 0.003 0.100 + 0.003 0.100 + 0.003 0.100 + 0.003 0.100 + 0.003 0.008 + 0.003 0.035 + 0.003 0.035 + 0.003 0.035 + 0.003 0.035 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.003 0.008 + 0.0005 0.008 + 0.008 0.000 + 0.008 0.000 + 0.008 0.000 + 0.008 0.000 + 0.008 0.000 + 0.008 0.000 + 0.008 0.000 + 0.008 0.000 + 0.008 0.000 + 0.008 0.000 + 0.008 0.000 + 0.000 0.000				0.35 + 0.02	0.35 + 0.03	0.35 + 0.03	0.035 + 0.003
20kHz-50kHz 0.10 + 0.04 0.12 + 0.05 0.15 + 0.08 0.60 + 0.08 0.060 + 0.08 0.060 + 0.008 0.060 + 0.008 0.060 + 0.008 0.060 + 0.008 0.060 + 0.008 0.060 + 0.008 0.060 + 0.008 0.060 + 0.008 0.060 + 0.008 0.060 + 0.008 0.0060 + 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.004 + 0.050 0.20 + 0.02 0.003 0.004 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.003 0.005 + 0.005 0.012 + 0.005 0.005 + 0.005 0.012 + 0.005 0.005 + 0.005		200 0000\/	10Hz-20kHz	0.04 + 0.02	0.07 + 0.03	0.08 + 0.03	
100kHz-300kHz		200.0000V	20kHz-50kHz	0.10 + 0.04	0.12 + 0.05	0.15 + 0.05	
A			50kHz-100kHz			0.60 + 0.08	0.060 + 0.008
SHz-10Hz			100kHz-300kHz	4.0 + 0.50	4.0 + 0.50		0.20 + 0.02
300.000V 10Hz-20kHz			3Hz-5Hz	1.00 + 0.02	1.00 + 0.03		0.100 + 0.003
20kHz-50kHz 0.10 + 0.04 0.12 + 0.05 0.15 + 0.05 0.012 + 0.005 50kHz-100kHz 0.55 + 0.08 0.60 + 0.08 0.60 + 0.08 0.60 + 0.08 100kHz-300kHz 4.0 + 0.50 4.0 + 0.50 4.0 + 0.50 0.20 + 0.002 3Hz-5Hz 1.10 + 0.06 1.10 + 0.06 1.10 + 0.06 0.200 + 0.006 5Hz-10Hz 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.100 + 0.006 10Hz-5kHz 0.15 + 0.06 0.15 + 0.06 0.15 + 0.06 0.015 + 0.006 5kHz-10kHz 0.35 + 0.70 0.35 + 0.70 0.35 + 0.70 0.030 + 0.006 5kHz-10kHz 0.35 + 0.70 0.35 + 0.70 0.35 + 0.70 0.030 + 0.006 5Hz-10kHz 0.30 + 0.04 1.00 + 0.04 1.00 + 0.04 0.005 + 0.006 10Hz-5kHz 0.12 + 0.04 0.12 + 0.04 0.12 + 0.04 0.015 + 0.006 5kHz-10kHz 0.20 + 0.25 0.20 + 0.25 0.20 + 0.25 0.030 + 0.006 5kHz-10kHz 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.100 + 0.006 5kHz-10kHz 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.100 + 0.006 5kHz-10kHz 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.100 + 0.006 5kHz-10kHz 0.35 + 0.70 0.35 + 0.06 0.35 + 0.06 0.100 + 0.006 5kHz-10kHz 0.35 + 0.70 0.35 + 0.70 0.35 + 0.70 0.030 + 0.006 5kHz-10kHz 0.30 + 0.04 0.30 + 0.04 0.30 + 0.04 0.100 + 0.006 5kHz-10kHz 0.20 + 0.25 0.20 + 0.25 0.20 + 0.25 0.030 + 0.006 5kHz-10kHz 0.30 + 0.04 0.30 + 0.04 0.30 + 0.04 0.015 + 0.006 5kHz-10kHz 0.20 + 0.25 0.20 + 0.25 0.20 + 0.25 0.030 + 0.006 5kHz-10kHz 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.035 + 0.006 5kHz-10kHz 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.035 + 0.006 5kHz-10kHz 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.035 + 0.006 5kHz-10kHz 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.035 + 0.006 5kHz-10kHz 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.035 + 0.006 5kHz-10kHz 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.035 + 0.006 5kHz-10kHz 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.035 + 0.006 5kHz-10kHz 0.35 + 0.06 0.35 + 0.00 0.35 + 0.006 5kHz-10kHz 0.35 + 0							
Page		300 000\/					
100kHz-300kHz		300.000 V		0.10 + 0.04	0.12 + 0.05	0.15 + 0.05	0.012 + 0.005
200.0000μA							
200.0000μA			100kHz-300kHz	4.0 + 0.50			
10Hz-5kHz 0.15 + 0.06 0.15 + 0.06 0.15 + 0.06 0.015 + 0.006 0.015 + 0.006 0.015 + 0.006 0.015 + 0.006 0.035 + 0.70 0.35 + 0.70 0.035 + 0.70 0.030 + 0.006 0.006			3Hz-5Hz	1.10 + 0.06	1.10 + 0.06	1.10 + 0.06	
ToHz-SkHz		200.0000114	5Hz-10Hz	0.35 + 0.06	0.35 + 0.06	0.35 + 0.06	0.100 + 0.006
真有 效值 空流 3Hz-5Hz 1.00 + 0.04 1.00 + 0.04 1.00 + 0.04 0.100 + 0.006 自有 效值 空流 20.00000mA 5Hz-10Hz 0.30 + 0.04 0.30 + 0.04 0.30 + 0.04 0.035 + 0.006 整定 20.00000mA 5Hz-10Hz 0.20 + 0.25 0.20 + 0.25 0.20 + 0.25 0.20 + 0.25 0.030 + 0.006 整定 3Hz-5Hz 1.10 + 0.06 1.10 + 0.06 1.10 + 0.06 0.200 + 0.006 5Hz-10Hz 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.15 + 0.06 0.100 + 0.006 200.0000mA 3Hz-5Hz 0.15 + 0.06 0.15 + 0.06 0.15 + 0.06 0.15 + 0.06 0.015 + 0.006 5kHz-10kHz 0.35 + 0.70 0.35 + 0.70 0.35 + 0.70 0.35 + 0.70 0.030 + 0.004 0.004 + 0.004 0.100 + 0.006 10Hz-5kHz 1.00 + 0.04 1.00 + 0.04 1.00 + 0.04 0.00 + 0.04 0.005 + 0.006 0.005 + 0.006 5kHz-10kHz 0.20 + 0.25 0.20 + 0.25 0.20 + 0.25 0.20 + 0.25 0.030 + 0.006 5kHz-10kHz 0.20 + 0.25 0.20 + 0.25 0.20 + 0.25 0.20 + 0.25 0.030 + 0.006 5kHz-10kHz		200.0000μΑ	10Hz-5kHz	0.15 + 0.06	0.15 + 0.06		0.015 + 0.006
真有 效値 で流 10Hz-5kHz 0.30 + 0.04 0.12 + 0.04 0.30 + 0.04 0.12 + 0.04 0.30 + 0.04 0.12 + 0.04 0.035 + 0.006 改値 交流 申流 ^[5] 20.00000mA 3Hz-5Hz 1.10 + 0.06 1.10 + 0.06 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.200 + 0.25 0.20 + 0.25 0.200 + 0.25 0.20 + 0.25 0.030 + 0.006 0.030 + 0.006 財産・10Hz 20.0000mA 3Hz-5Hz 1.00 + 0.04 1.10 + 0.06 0.35 + 0.06 0.35 + 0.06 0.15 + 0.06 0.100 + 0.006 0.015 + 0.006 0.015 + 0.006 0.015 + 0.006 東水市 [5] 3Hz-5Hz 5kHz-10kHz 1.00 + 0.04 0.35 + 0.70 1.00 + 0.04 0.35 + 0.70 0.35 + 0.70 0.35 + 0.70 0.030 + 0.006 0.015 + 0.006 10Hz-5kHz 10Hz-5kHz 0.10 + 0.04 0.10 + 0.04 0.10 + 0.04 0.10 + 0.04 0.10 + 0.04 0.10 + 0.04 0.015 + 0.006 0.015 + 0.006 3Hz-10kHz 10Hz-5kHz 0.10 + 0.04 0.00 + 0.025 0.20 + 0.25 0.20 + 0.25 0.20 + 0.25 0.20 + 0.25 0.20 + 0.25 0.030 + 0.006 0.015 + 0.006 5Hz-10kHz 10Hz-5kHz 0.15 + 0.06 0.35 + 0.06 0.15 + 0.06 0.015 + 0.06 0.015 + 0.006 0.015 + 0.006 0.015 + 0.006 5Hz-10kHz 10Hz-5kHz 0.35 + 0.06 0.35 + 0.06 0.35 + 0.70 0.35 + 0.00 0.015 + 0.006 0.015 + 0.006							
真有 效値 空流 电流 [5] 20.00000MA 10Hz-5kHz 0.12 + 0.04 0.12 + 0.04 0.12 + 0.04 0.015 + 0.006 0.200 + 0.25 0.20 + 0.25 0.20 + 0.25 0.20 + 0.25 0.30 + 0.006 0.30 + 0.006 0.30 + 0.006 0.30 + 0.006 0.200 + 0.006 0.200 + 0.006 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.100 + 0.006 0.200 + 0.006 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.15 + 0.006 0.015 + 0.006 0.015 + 0.006 0.015 + 0.006 0.015 + 0.006 0.015 + 0.006 0.015 + 0.006 0.015 + 0.006			3Hz-5Hz				0.100 + 0.006
真有 效値 空流 电流 ^[5] 20.00000mA 20.0000mA 20.00mA 20.00mA 20.00mA 20.00mA 20.00mA 20.00mA 20.00mA 20.00mA 20.00mA 20.000mA 20.00mA 20.000mA 20.000mA 20.000mA 20.000mA 20.000mA 20.000mA 20.000mM 20.000mM 20.000mA 20.000mA 20.000mM 20.0000mM 20.0000mM 20.0000mM 20.0000mM 20.000mM 20.000mM 20.000mM 20.000mM 20.000mM 20.00		2 000000mA					
真有 效值 交流 电流 [5]3Hz-5Hz1.10 + 0.061.10 + 0.061.10 + 0.060.200 + 0.006交流 10Hz-5kHz0.35 + 0.060.35 + 0.060.35 + 0.060.100 + 0.0060.15 + 0.060.15 + 0.060.15 + 0.060.15 + 0.060.015 + 0.0060.35 + 0.700.35 + 0.700.35 + 0.700.35 + 0.700.030 + 0.0063Hz-5Hz1.00 + 0.041.00 + 0.041.00 + 0.040.100 + 0.0045Hz-10Hz0.30 + 0.040.30 + 0.040.30 + 0.040.30 + 0.040.035 + 0.00610Hz-5kHz0.10 + 0.040.10 + 0.040.10 + 0.040.10 + 0.040.015 + 0.0065kHz-10kHz0.20 + 0.250.20 + 0.250.20 + 0.250.20 + 0.250.030 + 0.0063Hz-5Hz1.10 + 0.061.10 + 0.061.10 + 0.060.100 + 0.0065Hz-10Hz0.35 + 0.060.35 + 0.060.35 + 0.060.035 + 0.0065Hz-10kHz0.35 + 0.060.15 + 0.060.15 + 0.060.015 + 0.0065Hz-10Hz0.35 + 0.700.35 + 0.700.35 + 0.700.030 + 0.0065Hz-10Hz0.35 + 0.080.35 + 0.100.35 + 0.100.035 + 0.008		2.000000111A	10Hz-5kHz	0.12 + 0.04	0.12 + 0.04	0.12 + 0.04	
真有 效值20.00000mA5Hz-10Hz0.35 + 0.060.35 + 0.060.35 + 0.060.35 + 0.060.100 + 0.006交流 电流 [5]10Hz-5kHz0.15 + 0.060.15 + 0.060.15 + 0.060.015 + 0.0063Hz-10kHz0.35 + 0.700.35 + 0.700.35 + 0.700.030 + 0.0063Hz-5Hz1.00 + 0.041.00 + 0.041.00 + 0.040.100 + 0.0065Hz-10Hz0.30 + 0.040.30 + 0.040.30 + 0.040.035 + 0.00610Hz-5kHz0.10 + 0.040.10 + 0.040.10 + 0.040.015 + 0.0065kHz-10kHz0.20 + 0.250.20 + 0.250.20 + 0.250.20 + 0.250.030 + 0.0063Hz-5Hz1.10 + 0.061.10 + 0.061.10 + 0.060.110 + 0.0063Hz-5Hz1.10 + 0.061.10 + 0.061.10 + 0.060.15 + 0.065Hz-10Hz0.35 + 0.060.35 + 0.060.35 + 0.060.035 + 0.0065Hz-10kHz0.35 + 0.700.35 + 0.700.35 + 0.700.030 + 0.0065Hz-10Hz0.35 + 0.080.35 + 0.100.35 + 0.100.035 + 0.008			5kHz-10kHz	0.20 + 0.25		0.20 + 0.25	0.030 + 0.006
文流 東流 「5」			3Hz-5Hz	1.10 + 0.06	1.10 + 0.06	1.10 + 0.06	0.200 + 0.006
交流 电流 「S		20.00000mA	5Hz-10Hz	0.35 + 0.06	0.35 + 0.06	0.35 + 0.06	0.100 + 0.006
B連流 5 200.0000mA 3Hz-5Hz 1.00 + 0.04 1.00 + 0.04 1.00 + 0.04 0.30 + 0.04 0.30 + 0.006 0.30 + 0.04 0.30 + 0.04 0.30 + 0.04 0.035 + 0.006 0.005 + 0.006 0.005 + 0.006 0.005 + 0.006 0.005 + 0.006 0.005 + 0.006 0.006 0.005 + 0.006	效值	20.00000111A		0.15 + 0.06	0.15 + 0.06	0.15+ 0.06	
200.000mA	交流			0.35 + 0.70	0.35 + 0.70		0.030 + 0.006
200.0000mA	电流 [5]	I流 ^[5]	3Hz-5Hz	1.00 + 0.04			0.100 + 0.006
1.000000A							
1.000000A 3Hz-5Hz 1.10 + 0.06 1.10 + 0.06 1.10 + 0.06 0.35 + 0.06 0.35 + 0.06 0.35 + 0.06 0.035 + 0.06 0.015 + 0.06 0.015 + 0.06 1.000000A 1.0000000A 1.000 + 0.006 0.005 + 0.006 0.005 + 0.006 0.0015 + 0.006 0.0015 + 0.006 0.0015 + 0.006 0.0015 + 0.006 0.0015 + 0.006 0.0015 + 0.006 0.0015 + 0.006 0.0015 + 0.006 0.0015 + 0.006 0.0015 + 0.006 0.0015 + 0.006			10Hz-5kHz	0.10 + 0.04		0.10 + 0.04	
1.000000A			5kHz-10kHz		0.20 + 0.25	0.20 + 0.25	0.030 + 0.006
1.000000A			3Hz-5Hz	1.10 + 0.06		1.10 + 0.06	0.100 + 0.006
1.000000A 5kHz-10kHz 0.35 + 0.70 0.35 + 0.70 0.35 + 0.70 0.030 + 0.006 5Hz-10Hz 0.35 + 0.08 0.35 + 0.10 0.35 + 0.10 0.035 + 0.008			5Hz-10Hz	0.35 + 0.06	0.35 + 0.06	0.35 + 0.06	0.035 + 0.006
5Hz-10Hz 0.35 + 0.70 0.35 + 0.70 0.35 + 0.70 0.030 + 0.006 5Hz-10Hz 0.35 + 0.08 0.35 + 0.10 0.35 + 0.10 0.035 + 0.008		1 0000004	10Hz-5kHz	0.15 + 0.06	0.15 + 0.06		0.015 + 0.006
		1.000000A	5kHz-10kHz	0.35 + 0.70	0.35 + 0.70	0.35 + 0.70	0.030 + 0.006
10Hz-5kHz 0.15 + 0.08 0.15 + 0.10 0.15 + 0.10 0.015 + 0.008			5Hz-10Hz	0.35 + 0.08	0.35 + 0.10	0.35 + 0.10	0.035 + 0.008
			10Hz-5kHz	0.15 + 0.08	0.15 + 0.10	0.15 + 0.10	0.015 + 0.008

^{[1] 90} 分钟预热,慢滤波,正弦波输入。 [2] 所有量程为 10% 超量程。 [3] 相对于校准标准。 [4] >5% 量程的交流正弦波输入的性能指标。输入在 1% 到 5% 量程内时,若频率 <50kHz,则增加 0.1% 量程的附加误差,若频率在 50kHz 到 100kHz 区间,则增加 0.13% 量程的附加误差。 [5] > 5% 量程的交流正弦波输入的性能指标。输入在 1% 到 5% 量程内时增加 0.1% 量程的附加误差;200µA、2mA 和 1A 量程 >1kHz 指标为典型值。

测量特性

真有效值交流电压	
测量方法	AC 耦合真有效值测量,任意量程下可以有最高 300V 直流偏置。
波峰因数	满量程时波峰因数≤ 5
输入阻抗	所有量程下为 1MΩ±2% 并联 <150pF 电容
输入保护	所有量程 300V rms
AC 滤波器带宽	慢: 3Hz - 300kHz
	中: 20Hz - 300kHz
	快: 200Hz - 300kHz
共模抑制比	70dB,对于 LO 引线中的 1kΩ 不平衡电阻,共模信号频率 <60Hz,最大 ±300V peak。
真有效值交流电流	
测量方法	直流耦合到保险丝和分流电阻器,AC 耦合到真有效值测量(测量输入的 AC 成分)。
波峰因数	满量程时波峰因数 ≤ 3
最大输入	DC+AC 电流峰值必须 <300% 量程,包含直流电流成分的电流 <1A rms。
分流电阻器	200μA、2mA档: 100Ω
	20mA、200mA档: 1Ω
	1Α: 0.1Ω
建立时间注意事项	

频率和周期特性

准确度指标: ± (% 读数) [1][2]

功能	量程	频率范围	24 小时 ^[3] T _{CAL} ℃ ±1℃	90天 T _{CAL} ℃±5℃	1年 T _{CAL} ℃ ±5℃	温度系数 0℃至 (T _{CAL} ℃ -5℃) (T _{CAL} ℃ +5℃) 至 50℃
频率、	200mV 至 300V	3 Hz-5 Hz	0.07	0.07	0.07	0.005
周期		5 Hz-10 Hz	0.04	0.04	0.04	0.005
		10 Hz-40 Hz	0.02	0.02	0.02	0.001
		40 Hz-300 kHz	0.005	0.006	0.007	0.001
		300 kHz-1 MHz	0.005	0.006	0.007	0.001

万用表所选默认测量延时可以使大部分测量的第一个读数正确。在精确测量前必须确保输入端的 RC 回路已经完全稳定 (约 1s) 。

附加低频误差: (% 读数)

频率	闸门时间 (分辨率)	闸门时间 (分辨率)				
	1秒 (0.1ppm)	0.1 秒 (1ppm)	0.01 秒 (10ppm)	0.001 秒 (100ppm)		
3 Hz-5Hz	0	0.12	0.12	0.12		
5 Hz-10Hz	0	0.17	0.17	0.17		
10 Hz-40Hz	0	0.20	0.20	0.20		
40 Hz-100Hz	0	0.06	0.21	0.21		
100 Hz-300Hz	0	0.03	0.21	0.21		
300 Hz-1 kHz	0	0.01	0.07	0.07		
>1kHz	0	0	0.02	0.02		

注: [1]90 分钟预热,使用 1 秒闸门时间。 [2] 频率≤ 300kHz 时,指标系 10% 至 110% 量程交流输入电压;频率 > 300kHz 时,指标系 20% 至 110% 量程交流输入电压。 最大输入限制到 300Vrms 或 8 x 10⁷ Volts-Hz(取较小值)。200mV 量程为满量程输入或比满量程大的输入。对于 20mV 至 200mV,将全部 % 读数误差乘以 10。 [3] 相对于校准标准。

测量特性

频率和周期
测量方法 倒计数测频技术,AC 耦合输入,使用交流电压功能。
输入阻抗 所有量程下为 1MΩ±2% 并联 <150pF 电容
输入保护 所有量程 300Vrms
测量注意事项
所有频率计数器都在小电压,低频信号时引入误差。屏蔽输入非常有助于减小外部噪声带来的测量误差。
建立时间注意事项
当被测信号含有变化的直流分量时,测量周期或频率时会出现误差。在精确测量前必须确保输入端的 RC 回路已经完全稳定(约 1s)。

温度特性

准确度指标[1]

					, CI D(X(II)
功能	探头类型	类型	最佳范围	1年	温度系数
				T _{CAL} °C ±5°C	0℃至 (T _{CAL} ℃ -5℃)
					(T _{CAL} ℃ +5℃) 至50℃
温度		α =0.00385	-200°C至 660°C	0.16℃	0.01°C
	RTD ^[2] (R₀取值	α =0.00389	-200℃至 660℃	0.17℃	0.01℃
	49Ω至 2.1kΩ)	α=0.00391	-200°C至 660°C	0.14℃	0.01°C
		α=0.00392	-200℃至 660℃	0.15℃	0.01°C
		2.2 kΩ	-40℃至 150℃	0.08℃	0.002°C
	执句中四	3 kΩ	-40℃至 150℃	0.08℃	0.002°C
	热敏电阻	5 kΩ	-40℃至 150℃	0.08℃	0.002°C
		10 kΩ	-40℃至 150℃	0.08℃	0.002°C
		В	0℃至 1820℃	0.76℃	0.14°C
		E	-270℃至 1000℃	0.5℃	0.02°C
		J	-210℃至 1200℃	0.5℃	0.02°C
	热电偶 [3]	K	-270℃至 1372℃	0.5℃	0.03℃
		N	-270℃至 1300℃	0.5℃	0.04°C
		R	-50℃至 1768.1℃	0.5°C	0.09°C
		S	-50℃至 1768.1℃	0.6℃	0.11℃
		T	-270℃至 400℃	0.5°C	0.03℃

注: [1] 90 分钟预热。不包括传感器误差。 [2] 指标指四线电阻测量。 [3] 相对于冷端温度,准确度基于 ITS-90。内置冷端温度指接线盒内接线端的温度,准确度为 ±2.5℃。

测量特性

+	
热电偶	
转换	ITS-90 软件补偿
参考结类型	内部,固定或外部
T/C Check	每个通道可以单独设置 T/C Check。通道电阻大于 5kΩ 时,判断为 T/C 开路。
RTD	
Alpha	= 0.00385 (DIN/IEC 751):使用 ITS-90 软件补偿; = 0.00389、0.00391 或 0.00392:使用 IPTS-68 软件补偿
热敏电阻	
	44004, 44007, 44006 系列

测量注意事项

内置冷端温度补偿跟踪接线盒内温度,接线盒内温度变化可能引入额外误差。使用内置冷端温度补偿时,将热电偶线连接到接线盒内并预热 >3 分钟可以使冷端补偿的误差最小。

模块特性

MC3120/MC3132/MC3164/MC3324/MC3416/MC3648

多路复用器					执行器	矩阵
一般指标	MC3120	MC3132	MC3164	MC3324	MC3416	MC3648
通道数	20	32	64	20 电压 +4 电流	16	4×8
	2/4线 ^[6]	2/4线 ^[6]	1线 ^[7]	2/4线 ^[8]	SPDT	2线
是否可以连接 到 DMM 模块	是	是	是	是	否	否
扫描速度 [1]	60Ch/s	60Ch/s	60Ch/s	60Ch/s		
开关速度	200Ch/s	200Ch/s	200Ch/s	200Ch/s	200Ch/s	200Ch/s
		最大	输入			
电压 (DC, AC 有效值)	300Vrms	300Vrms	300Vrms	300Vrms	300Vrms	300Vrms
电流 (DC, AC 有效值)	1Arms	1Arms	1Arms	1Arms	2Arms	1Arms
功率 (W, VA)	50VA	50VA	50VA	50VA	60VA	50VA
隔离(通道之间,通道和地之间) (DC, AC 有效值)	300Vrms	300Vrms	300Vrms	300Vrms	300Vrms	300Vrms
		直流	特性			
偏移电压	5uV	5uV	5uV	5uV	<3uV	5uV
通道闭合初始电阻	<1Ω	<1Ω	<1Ω	<1Ω	<0.1Ω	<1Ω
隔离 (通道之间,通道和地之间)	>10GΩ	>10GΩ	>10GΩ	>10GΩ	>10GΩ	>10GΩ
		交流	特性			
带宽	1MHz	1MHz	1MHz	1MHz	1MHz	1MHz
通道间串扰(dB) ^[2] 1MHz	-45	-45	-18 ^[3]	-45	- 15	-18
电容 HI-LO	100pF	100pF	100pF	100pF	<500pF	100pF
电容 LO- 地	200pF	200pF	200pF	200pF	<200pF	200pF
Volt-Hertz Limit	10 ⁸	10 ⁸	10 ⁸	10 ⁸	10 ⁸	10 ⁸
		其				
T/C 冷端精度 (典型)	0.8℃	0.8℃	0.8°C [4]	0.8℃		
开关寿命(无负载) (典型)	100M	100M	100M	100M	100M	100M
开关寿命(额定负载)(典型)[5]	100K	100K	100K	100K	100K	100K
操作温度	0°C - 55°C	0°C - 55°C	0°C - 55°C	0°C - 55°C	0°C - 55°C	0°C - 55°C
储藏温度	-20°C - 70°C	-20°C - 70°C	-20°C - 70°C	-20°C - 70°C	-20°C - 70°C	-20°C - 70°C
相对湿度 (无凝结)	40°C / 80% RH	40°C / 80% RH	40°C / 80% RH	40°C / 80% RH	40℃ / 80% RH	40℃ / 80% RH

注:[1] 积分时间为 0.02PLC,通道延迟为 0,关闭自动调零,关闭报警,关闭定标,数据到内存(断开 LAN、USB、GPIB 以及 RS232等接口的通信),在 DCV 功能下的测试结果。
[2] 匹配阻抗为 50Ω
[3] 不同组之间的隔离 > 40dB
[4] 此模块的热电偶精度不在于冷端温度,而在于 LO 端的设置
[5] 仅在负载为阻性时
[6] 20 通道多路复用器可用作 20 个二线测量通道或 10 个四线测量通道。32 通道多路复用器可用作 32 个二线测量通道或 16 个四线测量通道。
[7] 64 通道多路复用器可用作 20 个二线测量通道或 10 个四线测量通道。 10 个四线测量通道。

MC3534

数字输入/输出	(DIO)						
端口 1,2,3,4	8位,输入	或输出, 🖠	ド隔 离				
模式	Vin(L)		Vin(H)	Vout(L)	Vout(H)	Vin(H) Max	
TTL	<0.8V		>2.0V	<0.2V@I _{out} =-500mA	>4.8V@I _{out} =1mA	<42V,外部漏极开路	
5V CMOS	<1.5V		>3.5V	<0.2V@I _{out} =-500mA	>4.8V@I _{out} =1mA	上拉	
3.3V CMOS	<1.0V		>2.3V	<0.2V@I _{out} =-500mA	>3.15V@I _{out} =1mA		
2.5V CMOS	<0.75V		>1.75V	<0.2V@I _{out} =-500mA	>2.35V@I _{out} =1mA		
用户自定义	Threshold-	-0.3V	Threshold+0.3V	<0.2V@I _{out} =-500mA	> (L e v e I - 0 . 2 V) @ I _{out} =1mA		
报警	可根据匹配值或不匹配值进行比较或屏蔽					可根据匹配值或不匹 配值进行比较或屏蔽	
Speed	4ms(Max)报警采样				4ms (Max) 报警采 样		
Latency	5ms	S				5ms	
读写速度	100次/s				100次/s		
计数器输入 (TOT)						
		高速通道 (TOT1,TOT2)		常速通道 (TOT3,TOT4)			
最大计数值	2 ³² -1			2 ³² -1			
计数器输入		最大 10MHz,上升沿或下降沿,可编程		最大 100kHz,上升沿或下降沿,可编程			
信号电平	CMOS 3.3V,5V tolerable		1Vp-p(min),42Vpk(max), Vcm=-12V~+12V				
阈值	内部固定为 CMOS 3.3V		-12V~+12V,可编程				
门控输入	CMOS 3.3V-Hi, CMOS 3.3V-Lo 或无, 5V 容限			CMOS 3.3V-Hi, CMOS 3.3V-Lo 或无, 5V 容限			
计数复位	手动或读取 + 复位			手动或读取 + 复位			
读速度	100次/s	100次/s 100次/s					
模拟电压输出 ([DAC)						
DAC 1,2,3,4		±12V,非隔离(以地为参考)					
分辨率		1mV					
lout		最大 10n	nA				
建立时间		1ms 至输出的 0.01 %					
精度			output + mV)				
1年±5℃		0.25%+2					
温度系数	±(0.015%+1mV)/°C						

一般技术规格

显示	4.3 英寸
电源	AC 100V - 120V, 45Hz - 440Hz
	AC 200V - 240V,45Hz - 66Hz 上电时自动检测电源频率,400Hz 等同于 50Hz
功耗	25 VA Max
工作环境	全精度: 0℃至 50℃ 40℃时,湿度到 80% R.H.,无凝结
存储温度	-40°C至 70°C
操作海拔	上限 2000m
安全性	IEC 61010-1; EN 61010-1; UL 61010-1; CAN/CSA-C22.2 No. 61010-1
	测量 CAT I 300V
	污染等级 2
EMC	EN 61326-1
重量	约 5.7 kg (不含包装)
尺寸	(高×宽×长) : 159.0mm×239.0mm×373.4mm
远程接口	GPIB、10/100Mbit LAN、USB 2.0 Full Speed Device & Host (支持 U 盘) 、RS232
编程语言	SCPI
LXI 兼容性	LXI Core 2011 Device, Version 1.4
预热时间	90 分钟

▶订货信息

	描述	订货号
	M300 数据采集 / 开关系统	M300
主机	M300 数据采集 / 开关系统 + MC3065 DMM 模块	M301
	M300 数据采集 / 开关系统 + MC3065 DMM 模块 + MC3120 20 通道多路复用器 + M3TB20 接线盒	M302
标配附件	符合所在国标准的电源线	-
	USB 数据线	CB-USBA-USBB-FF-150
	混合接口拆分线	MIX-SEPARATOR
	M300 系列标配的上位机控制及分析软件	Ultra Acquire
	4 根备份保险丝: 2 根: AC, 250V, T3.15A 2 根: AC, 250V, T250mA	-
	DMM 模块 (6½ 位)	MC3065
	20 通道多路复用器	MC3120
	32 通道多路复用器	MC3132
选配附件:模块	64 通道单端多路复用器	MC3164
远 即什:	20 通道电压 +4 通道电流多路复用器	MC3324
	16 通道执行器	MC3416
	多功能模块	MC3534
	4×8 矩阵开关	MC3648
	MC3120 接线盒	M3TB20
	MC3132 接线盒	M3TB32
	MC3132 接线盒	M3TB32T
选配附件:接线	MC3164 接线盒	M3TB64
盒	MC3324 接线盒	M3TB24
	MC3648 接线盒	M3TB48
	MC3534 接线盒	M3TB34
	MC3416 接线盒	M3TB16
选配附件	RS232 串口线	-
	SMB 转 BNC 线缆	SMB-BNC
	模拟总线外接头	A-BUS-EXT-PORT
	机架安装套件	RM-1-M300
	2 台并列机架安装套件	RM-2-M300
	M300 系列上位机控制及先进数据分析软件	Ultra Acquire Pro

注:所有主机,附件和选件,请向当地的RIGOL经销商订购

全面助力智慧世界和科技创新

- 豪 蜂窝-5G/WIFI
- **Q** UWB/RFID/ ZIGBEE
- ◆◆ 数字总线/以太网
- @ 光通信

- ② 数字/模拟/射频芯片
- P 存储器及MCU芯片
- ⇒ 第三代半导体
- ☎ 太阳能光伏电池

- 新能源汽车
- 光伏/逆变器
- (1) 电源测试
- **冷** 汽车电子

为行业客户提供测试测量产品和解决方案

RIGOL开放实验室

地 址: 北京、苏州、深圳、西安 开放时间: 工作日 9:00 am~6:00 pm

预约电话: 400-620-0002

RIGOL客服热线: 400-620-0002

官网预约网址:

https://www.rigol.com/quote/Lab-appoint.html

RIGOL开放实验室预约

RIGOL实验室视频号

RIGOL®是普源精电科技股份有限公司的英文名称和商标。 本文档中的产品信息可不经通知而变更,有关RIGOL最新的 产品、应用、服务等方面的信息,请访问RIGOL官方网站:

www.rigol.com

RIGOL官方微信

RIGOL官网